Renormalization of stochastic lattice models: epitaxial surfaces.
نویسندگان
چکیده
We present the application of a method [C. A. Haselwandter and D. D. Vvedensky, Phys. Rev. E 76, 041115 (2007)] for deriving stochastic partial differential equations from atomistic processes to the morphological evolution of epitaxial surfaces driven by the deposition of new material. Although formally identical to the one-dimensional (1D) systems considered previously, our methodology presents substantial additional technical issues when applied to two-dimensional (2D) surfaces. Once these are addressed, subsequent coarse-graining is accomplished as before by calculating renormalization-group (RG) trajectories from initial conditions determined by the regularized atomistic models. Our applications are to the Edwards-Wilkinson (EW) model [S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A 381, 17 (1982)], the Wolf-Villain (WV) model [D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990)], and a model with concurrent random deposition and surface diffusion. With our rules for the EW model no appreciable crossover is obtained for either 1D or 2D substrates. For the 1D WV model, discussed previously, our analysis reproduces the crossover sequence known from kinetic Monte Carlo (KMC) simulations, but for the 2D WV model, we find a transition from smooth to unstable growth under repeated coarse-graining. Concurrent surface diffusion does not change this behavior, but can lead to extended transient regimes with kinetic roughening. This provides an explanation of recent experiments on Ge(001) with the intriguing conclusion that the same relaxation mechanism responsible for ordered structures during the early stages of growth also produces an instability at longer times that leads to epitaxial breakdown. The RG trajectories calculated for concurrent random deposition and surface diffusion reproduce the crossover sequences observed with KMC simulations for all values of the model parameters, and asymptotically always approach the fixed point corresponding to the equation proposed by Villain [J. Phys. I 1, 19 (1991)] and by Lai and Das Sarma [Phys. Rev. Lett. 66, 2899 (1991)]. We conclude with a discussion of the application of our methodology to other growth settings.
منابع مشابه
Transient regimes and crossover for epitaxial surfaces.
We apply a formalism for deriving stochastic continuum equations associated with lattice models to obtain equations governing the transient regimes of epitaxial growth for various experimental scenarios and growth conditions. The first step of our methodology is the systematic transformation of the lattice model into a regularized stochastic equation of motion that provides initial conditions f...
متن کاملar X iv : c on d - m at / 9 50 10 05 v 1 4 J an 1 99 5 Renormalization Group results for lattice surface models
We study the phase diagram of statistical systems of closed and open interfaces built on a cubic lattice. Interacting closed interfaces can be written as Ising models, while open surfaces as Z(2) gauge systems. When the open surfaces reduce to closed interfaces with few defects, also the gauge model can be written as an Ising spin model. We apply the lower bound renormalization group (LBRG) tra...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملLattice Gas Models and Kinetic Monte Carlo Simulations of Epitaxial Growth
A brief introduction is given to Kinetic Monte Carlo (KMC) simulations of epitaxial crystal growth. Molecular Beam Epitaxy (MBE) serves as the prototype example for growth far from equilibrium. However, many of the aspects discussed here would carry over to other techniques as well. A variety of approaches to the modeling and simulation of epitaxial growth have been applied. They range from the...
متن کاملHighly ordered C60 films on epitaxial Fe/MgO(001) surfaces for organic spintronics
Hybrid interfaces between ferromagnetic surfaces and carbon-based molecules play an important role in organic spintronics. The fabrication of devices with well defined interfaces remains challenging, however, hampering microscopic understanding of their operation mechanisms. We have studied the crystallinity and molecular ordering of C60 films on epitaxial Fe/MgO(001) surfaces, using X-ray diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 77 6 Pt 1 شماره
صفحات -
تاریخ انتشار 2008